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allow for computation of distributions of first passage and sojourn times
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THE RANDOMIZATION TECHNIQUE AS A MODELING TOOL AND
SOLUTION PROCEDURE FOR TRANSIENT MARKOV PROCESSES

by

Donald Gross
Douglas R. Miller

0. INTRODUCTION
Markov processes (with discrete state space over continuous time)
are good models for many stochastic systems, including certain queuing
systems, inventory systems, reliability and maintenance models, etc. The
analyses of these Markov process models are often restricted to steady-
state behavior, that is, systems in equilibrium. However, there are many
instances in which the transient behavior of the process is important:
(i) Transient behavior is often encountered because of changes in
operating conditions of the system due to exogencus environmental
conditions or internal control of the system, such as the opening
or closing of a queuing system.
(i1) In some systems with time homogeneous stochastic behavior, the
convergence to steady state is so slow that the equilibrium

behavior is not indicative of system behavior.
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(iii) For systems in steady stale, there are some transients of interest,
such as busy periods for queuing systems.

(iv) To obtain equilibrium results for some models, transient behavior
is useful. For example, the steady-state behavior of regenerative
processes is characterized by the behavior during an individual
cycle (transient behavior); see Ross [1970, Theorem 5.8].

The primary transient quantities of interest are the time-dependent
state probabilities. From these, time-dependent moments can be calculated,
etc, (Other quantities of interest are distributions of first passage
times, expected cumulative occupancy times during a time interval, and
expected number of a certain class of events occurring during a time
interval.) In general, the transient state probabilities of a Markov
process can be computed by solving a system of linear first order dif-
ferential equations. Nice analytical solutions rarely exist. Even for
the M/M/1 queue, the solution comes out as a rather formidable expression
in terms of modified Bessel functions; see Gross and Harris [1974]. 1In
general, numerical methods must be used to solve for the transient state
probabilities.

"randomization," first

This paper focuses on the approach called
introduced as a computational method by Grassmann [1977]. 1t is a general
method for computing transient probabilities of Markov processes with
finite state spaces, for example, finite queues (finite source or finite
capacity). The method can be used on many infinite state Markov processes

by approximating the process with a finite state Markov process; for

example, an M/M/c/® queue can be approximated by an M/M/c/K queue with

-2 -
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sufficiently large K. The randomization approach has the advantage of
having a probabilistic interpretation that can be exploited in efficient

model generation and computations for a broad class of Markov models.

The paper is organized as follows. Section 1 presents transient
theory for Markov processes and reviews some of the solution approaches.
Section 2 presents the idea of subordinating a Markov chain to a Poisson

process, the basis of the randomization approach. Section 3 develops

these ideas for birth-death processes. Section 4 gives details encountered
in randomization computational algorithms. Section 5 presents a general
modeling approach called SERT which can be used with the randomization

i} approach; three examples are given. Section 6 gives formulae and meth-

3 odology for computing other transient quantities in addition to state
probabilities. Section 7 gives a randomization implementation for sparse

L[]
m systems. Section 8 contains some concluding remarks.

1. TRANSIENT STATE PROBABILITIES OF MARKOV PROCESSES

' T'v T

Let {X(t), t > O} be a Markov process on a finite state space
s = {0,1,...,N} . The stochastic evolution of this process is character-

ized by its generator,

B DA i)
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and the element q.. is
1)

1im pi.(At)/At .
Ao M

where
pij(At) = Pr{X(t + At) = j | X(t) = i} .

These Markov processes include realistic classes of Markovian
queuing models such as finite waiting room (capacity) queues, finite
source (machine repair) queues, cyclic queues, and closed queuing net-
works. (Also, infinite Q matrices can be approximated by truncation for

some large value of N for many models.) For example, the Q matrix for a

general birth-death system with finite capacity is given by

f—xo X, 0 0o o0 ... .. 07
Wy (-Al-ul) Al 0 0o ... .
0 Uy (—Az-uz) Az o ...

.o

Q= :
0
: 0 wvv Mgy A M) A
o ... oo My “Hy
(1)
Let ﬂj(t) = Pr{X(t) = j} and m(t) = (m (), m (), ..., M (L)) 3

then the Kolmogorov forward equations (see Karlin and Taylor [1975, p. 152],

-4 -
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or Heyman and Sobel [1982, p. 295), for example) are

m'(t) = T(E)Q - (2)
For a finite state space S = {0,1,...,N} we have a system of N + 1
first order, linear differential equations to solve.

Given E(O) , there are several approaches to the solution of (2).
Classical numerical analysis techniques for the numerical integration of
(2) include Runge-Kutta, or predictor-corrector methods, etc., as dis-
cussed by Arsham, Balana, and Gross [1981], Grassmann [1977], or Maron
[1982]. These methods have the disadvantage that they are formal numeri-
cal analysis techniques and ignore any exploitable probabilistic structure
of the problem (for example, the structure of Q).

Another approach is to note that

m(t) = m(0) &%

is the solution of (2), where by definition

A common method of computing th is based on the spectral representation
of Q (see ¢inlar (1975, pp. 367-370], or Karlin and Taylor [1975, pp.
539-541], for example). This involves computation of all the eigenvalues
and eigenvectors of Q, a very tricky feat when the state space S is large.
Liou [1966] proposed an iterative computational procedure for computing
the terms of

oo n_n
m(e) = ] mo) - (3)

n=0

recursively, but as Grassmann [1977] points out, the existence of

-5~
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negative diagonal elements in ) leads to possibly severe round off errors.
Moler and Van Loan [1978] give a survey of methcds for computing the expo-
nential of a matrix. They are primarily concerred with matrices that are
small enough to be stored in core memory (the randomization method can
handle much larger matrices for sparse systems); They also poiut out how
difficult it is to solve this computational problem in general.

The randomization method is especially taiiored for solution of
(2) when Q is the generator of a Markov process and m is a probability
vector. It has a probabilistic interpretation that can be used to bound
the truncation error arising from the infinite series in (3) and which
allows the algorithm to work only with positive numbers (thus minimizing
round off errors). Furthermore, the probabilistic meaning is an aid in
setting up the model and executing the algorithm for a large class of
systems, The randomization approach is based on the subordination of a

Markov chain to a Poisson process.

2. MARKOV CHAINS SUBORDINATED TO POISSON PROCESSES

Let {Yn, n=20,1,2,...} be a Markov chain on a countable state
space S with transition matrix P. Let {N(t), t > 0} be the counting
process of a Poisson process with rate A, i.e., N(t) equals the number of
occurrences in [0,t] and Pr{N(t) = n} = e_At(At)n/n! . Assume that {Yn} and
{N(*)} are independent. Define the process {X(t) = YN(t)’ t>0}. It
is well known that {X(t), t 2!0} is a Markov process (continuous time)
on S with generator Q = A(P - I) and the same initial distribution.
This construction is referred to as a Markov chain subordinated to a

Poisson process; see Feller [1971, p. 345], or Cinlar [1975, p. 236].
§

-6 -
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Cohen [1969] refers to these processes as derived Markov chains. It is
also occasionally referred to as a Markov chain on an underlying Poisson
process. Feller [1971) refers to the events of the Poisson process as a
"randomized operational time" and the construction as 'randomization by
Poisson distributions;" hence the name randomization is applied to this
construction as well as to the computational technique that exploits it.
Conversely, let {X(t), t > 0} be a Markov process on a countable
state space S with generator Q. Furthermore, assume that X(+) is
uniformizable, i.e., the diagonal elements of Q are uniformly bounded, and

let A = sup q Then there exists a Markov chain (discrete time)

ieS
{Yn, n=20,1,...} on S with transition matrix P = Q/A + I and a Poisson

Al
i

process {N(t), t > 0} with rate A, which are independent of each other,

such that the process {Y t >0} and {X(t), t > 0} have the same

N(t)?
finite dimensional distributions and are thus probabilistically identical.
(See Heyman and Sobel [1982, pp. 310-311], for example.)

The above construction gives a very useful computational formula
for the transient probabilities of a uniformizable Markov process. Con-

ditioning over the number of occurrences of the Poisson process in [0,t]

and using the law of total probability gives

ns(t) P{X(t) = s}

= P{YN(t) = s}

) P{fgcey =5 | N(t) = n} P{N(t) = n}
n=0

= E P{Y_ = s} g:ﬁ££A£LE
h=0 n n! *
-7 -




Y

b

v B

1]
It

Delining ¢q(n) P{Yn =gl and $(n) (¢l(n), ¢2(n), ...) , this equa-

tion becomes

w -At n

n=0

. (4)

Recalling that w(0) = ¢(0) and P is the transition matrix of

{Yn’ n=0,1,...} , equation (4) can be written as

o -At n
m(e) = J 11(0)13“9——1,(!/\;)

n=0

. (5)

This formula appears in Cinlar [1975, p. 259], and Cohen [1969, pp. 46-
47]. It is apparently originally due to Jensen [1953].

This construct relating a Markov process to a randomized Markov
chain, originally due to Jensen [1953), is useful in a least two other
general areas of applied probability. It is useful for developing sto-
chastic inequalities between processes and monotonicity properties of
processes (see Keilson [1979], Keilson and Kester [1977], Kirsten [1977],
and Sonderman [1980], for example). This construction is also useful for
establishing equivalences between discrete and continuous time Markov
decision processes (see Howard [1960], Lippman [1975], Serfozo [1979],

and Veinott [1969]).

3. A DIRECT PROBABILISTIC DEVELOPMENT OF THE RANDOMIZATION
CONSTRUCT FOR A BIRTH~-DEATH PROCESS

As an example to illustrate this construction, let us consider
the birth and death process whose generator Q is given in (1). We have

a birth~death process, which means that the system state (the population
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size) can change by +1 or ~1; that is, if a birth occurs, the size in-

;‘ creases by one, while if a death occurs, the size decreases by one. 1In a

T
"~

YT
A L s

small instant of time, if the system is in state s, the probability of an
increase to s + 1 is XSAt + o(At) , and the probability of a decrease to
s - 1 is usAt + o(At) . By the definition of conditional probability,
letting X(t) represent the random variable '"'size of the population at

time t," we have

r

Pr{X(t + At) = s + 1 | X(t) = s and a transition occurs in (t + At}]}

e

[AsAt + o(At)]ﬂS(t)
- [AsAt + usAt + o(At)]nS(t)

L iy

3 ASAt + o(At)
(AS + ps)Ac + o(At)

Taking the limit as At goes to zero tells us that given that a transition
! occurs when the system is in state s, the probability that it will be a

birth (increase to s + 1) is AS/(XS + us) , where 20 and A  =0.

Ho

Thus the probability that, given a transition occurs when the system is

in stats s, it is a death (decrease to s - 1) is uS(AS + us) .

The holding time in state s for this Markov process is the minimum
of two exponential random variables, the interarrival time with parameter
As and the service time with parameter Mg hence the holding time is also
an exponential random variable with parameter As + us .

Thus we can view the system as a Markov process with exponential

k. holding times [mean of (AS + us)—] for holding in state s] and transition
R " "
probabilities of AS/(As + us) and us/(As + us) for going "up" one or

"down" one, respectively, from state s. Furthermore, it can be shown

e s W Wt o Bt B e B vy 0 s e e 2 im —m A =
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that the occurrence of "birth" or "death" is independent of the holding
time.

Suppose we wish to generate this process, for example, to simulate
it by Montc Carlo means. We could first generate the transition time oc-
currence and then generate, using simple Bernoulli probabilities, the
change of state--that is, whether the process increases or decreases its
state by one. The generation of the transition times is somewhat compli-
cated in that we would have to sample from an exponential distribution
with a state-dependent parameter As + Ug -

To avoid this, we can reproduce this process in the following way.
Consider the minimum mean holding time (time until the next transition
occurs) of the process. This will correspond to the maximum value of
As + Hg o OT equivalently, the minimum diagonal element of Q, the gener-
ator of the process. Call this value A. Let us denote the diagonal ele-

ments of the Q matrix by =4, that is,

AO (s = 0)
qg = As + Mg (s =1,2,...,N - 1)
My (s = N)

To reproduce our desired transition occurrence process, we could generate
a true Poisson process with rate A (exponential holding times with con-

"thin" the process to get the desired state-

stant mean 1/A) and then
dependent transition rate. By thinning, we mean that whenever an occur-
rence is generated by the Poisson (A) process, if we are in state s we

draw from a Bernoulli probability distribution with success probability

qs/A, where a success indicates counting the occurrence of a transition

- 10 -
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and a faillure (probability 1 - qs/A) indicates ignoring the occurrence.
This thinning procedure on the Poisson (A) process generates our desired
underlying state-dependent transition process.
Thus, to reproduce our process we can
i. generate a Poisson process with rate A;
ii. thin the Poisson (A) process by a Bernoulli "switch" with
acceptance probability qS/A and rejection probability
1- qS/A;
iii. generate the state change (up or down one unit) by another
Bernoulli switch with an up probability of As/(ks + us)
and a down probability of us/(ls + us) .
Denote the Poisson process as {N(t), t > 0} , i.e., N(t) equals the
number of occurrences in [0,t], and let Yn equal the state of the system
after the nth occurrence of the Poisson process, i.e., Yn equals X(Tn)’
where Tn = min(t : N(t) > n) . Viewing the process in this manner wiil
allow us to derive the randomization computing algorithm that will yield
m(t).
Consider an element of the transient state probability vector
E(t)’ say ns(t) = P{X(t) = s} . Letting pis(t) = Pr{X(t) = s | X(0) = i}
gives

m (L) = 1£S 7, (0)py () . (6)

Now considering our process as described above, we have, using the law of

total probability,

- 11 -
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o
pis(t) = Z Pr{Yn =s | Yo = i} Pr{N(t) = n}

r( n=0
&1 o -At n
- _ ~(n) e (At) 7
' Pis n!
- n=0
’! where E§:) represents the probability of going from state i to state s

in n occurrences of the Poisson process. But

h Eii) = Pr{of going from 1 to s in one occurrence}
t‘
] = Pr{of accepting the occurrence as a transition}
x Pr{of transiting from i to s | a transition takes place}
- q A A
i i i
- - T == (s =1+1)
‘ A Ai + My A
q %) H
T TR e=i-D
. = i7 Wi
A, tu
i i
1 - I (s i)
0 (elsewhere)
Denote the matrix with elements ﬁii) by P; note that P = Q/A + I. We

can obtain 5§:) as elements of a matrix formed by multiplying P by itself

n times, i.e.,

g ~(n) 3.0
{pis } = [P] .
Substituting this into equations (6) and (7) yields
g At
o - n
g ) = § (o)t &8
~ n=0 ~

) which is equation (5). Thus we have illustrated the general theory with

this special case of a birth-death process.

-12 -




- Ve wratees

T PR

s Ve W gy

T-467

ALGORITHMIC IMPLEMENTATION OF THE
RANDOMIZATION FORMULA

40

The randomization algorithm is based upon equation (4):

(At)n

n'

I o) < (4)

m(t) =
n=0
There are several considerations that arise in implementing this tech-
nique: (i) truncation of the infinite series, (ii) efficient calculation
of ?n’ (i1ii) multiple time points, (iv) changes in Q, (v) an approach to
systems with small state spaces, (vi) an approach to systems with infi-
nite state spaces, and (vii) efficient computation of moments and prob-

abilities of subsets.

4.1 Truncation of the Randomization Formula

Equation (4) involves an infinite series. Thus, we must obviously

truncate the series at some point, say T, so that the computational formu-

la becomes

-At(At)n
n!

m(t) = Z ¢(n) . (8)

n=0 ~
We can set T to bound the error due to truncation (see Arsham,et

al. [1981], for example) by satisfying

—At z (At)

~al =€,

n=0
where € is the desired error control. This would guarantee ﬂs(t) and all

other probabilities to be accurate to within € (€ = 10-3, for example,

guarantees at least two decimal place accuracy).

- 13 -
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4.2 Efficient Calculation of ?(n)

To use equation (8), ?(n) must be computed. Recall that ¢s(n) =
P{Yn = s}, where {Yn, n=0,1,...} is the discrete time Markov chain.
Thus the randomization computational technique really reduces to compu-
tation of the transient probabilities ¢ of the Markov chain.

Computation of the ¢(n)'s is naturally a recursive procedure, since

¢(n + 1) = ¢()F , 9

a fact that follows from elementary Markov chain theory. In general,

the calculation in equation (9) is a straightforward matrix multiplica-
tion. However, most specific systems have sparse P matrices and thus
efficient computation of equation (9) should exploit the sparseness of

P. Grassmann [1977,1982) uses sparse matrix techniques, although he

does not explain them in detail. Melamed and Yadin [1981] give a recur-
sion for efficiently computing ?(n) for Jacksonian queuing networks which
exploits the sparseness of Q. We give a general modeling approach

called SERT in Section 5 of this paper-~it is a method applicable to many
sparse systems. In Section 7 we give a general approach that completely
exploits the sparseness.

There is one other feature of the efficient calculation of equa-
tion (9) that should be mentioned. In many systems, it is most natural
to use a multidimensional description of the state space. However,
equation (9) can be calculated in less time if the state space is "lin-
earized," i.e., the states are ordered into a one-dimensional state space.
This efficiency is gained because less arithmetic is involved in locating

and storing values in a vector than in an array. Also, since these

- 14 -
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multidimensional state spaces aften have irregular shapes, some storage
space is wasted by the dummy states required in filling the state space

out as a rectangular array.

4.3 Transients at Multiple Time Points

In a typical application we will want to compute transient quan-

- LN ] <
tities at a sequence of time points tl < t2 < < tm—l < tm tm+1 < tz

‘ instead of just at a single time point. Typically, these time points will

be on a lattice, i.e., tm = h for all m. Without loss of gener-

totl T
ality, we can label our time scale so that h = 1. Consequently, we would
- like to compute w(1l), 3(2), ..oy M(L) and related measures over the

time periods.

Using the randomization algorithm £ times, once for each w(m), is

T

very inefficient because the ?'s will be recomputed each time. Thus,

the efficient approach is to compute the ¢'s recursively and as each is

EXRLEANA T 5~ g

computed, add a term to each of the L series

!" -At_ .
: i e (Atm)

Z ¢(n)—_T__', m=1:23"°:2"
n=0 "~ n

until the desired truncation points T(e,tm), m=1,2,...,%, are reached.

| Sl i i

E 4,4 Changes in the Generator Q

A phenomenon that may occur in the study of transient behavior is
& time-nonhomogeneity of the stochastic process. For a Markov process, one
T manifestation of this phenomenon is the change of the generator at some
; discrete point in time: on [0,2), the process may have generator Q and
: then on [%,2'] have generator Q'. In order to compute the transient

T Y Y
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probabilities in this case, we compute f(l),...,f(l) as before and
;’ then use.f(l) as the initial probabiiity vector for a second problem
involving a process with generator Q'.

Thus, letting P' = Q'/A' + I be the transition matrix of a

E Markov chain {Y;x, n = 0,1,2,...} , which has initial distribution

¥ $'(0) = m(L) and marginals ¢;(n) = Pr{Y; s} , we have

¢'(n + 1) = ¢' ()P’
and

= , k=1,2,... .

T!
| TR+ k) = ] ¢'(n)
T i 2

When applying the randomization algorithm to Markov processes
whose generator changes at discrete times during the time interval of
2 interest, [0,%], there is a slight difficulty in dealing with the trun-
cation error €. It is desired that all probabilities computed have a
5 maximum error equal to the inputted value of £; this is achieved by
working over each subinterval with epsilons which sum to an inputted €
and are proportional to the appropriate time subinterval. For example,
suppose we are interested in transient behavior over [0,15] and the
generator changes at times 6 and 10. Then the problem will be solved
in three parts: first on [0,6], epsilon equal to (6/15)c is used;

] then on [6,10], epsilon equal to (4/15)e is used; and finally on [10,15],

epsilon equal to (5/15)e is used. This approach will guarantee that all
probabilities related to the interval [0,15] will have a computational

error of € or less.

~ 16 -
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4.5 Systems with Small State Spaces

R |

For systems with small state spaces which do not have a high
degree of sparseness, there is another way to compute transient prob-
abilities on a lattice of time points, tm =m, m=20,l,...,2 . In
this case we modified the above algorithm to compute the matrix of

probabilities P(l) = {pis(l)} , where
p; ¢(1) =P{x(1) = | x(0) = 1}

and using previous notation we have
-A AR

r1) = § B SL};T"'
n=0 i

giving us a computational formula after the appropriate truncation of
the infinite sum.

Assuming the process is time-homogeneous over [0,%), i.e., the
generator Q does not change, we use the initial probability vector H(O)

and then recursive computation to obtain

7(1) = m(0)P(1)
m(2) = m(1)P(1)
m(2) = m(L - 1)P() .

The program SASTRANX described in Balana, et al. [1982] computes tran-
sient probabilities for a machine repair system that experiences changes

in rates at a finite number of discrete time points in this way.

-~ 17 -
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4.6 Systems with Infinite State Spaces

Some systems, such as infinite capacity queuing systems, will
have infinite state spaces. Melamed and Yadin [1981] consider this
type of system. In this case it is necessary to truncate the state
space. This will introduce an approximation error into the calcuia-
tions. This error can be bounded by collapsing all the truncated states
into one absorbing state and then applying the randomization algorithm.
The probability that the system is in the absorbing state will be a
bound on the error introduced by truncating the state space. For an
example, see Section 5.2

4.7 Efficient Computation of Moments and
Subset Probabilities

In the transient analysis of a Markov process, if the only per-
formance measures of interest are moments or probabilities of certain
subsets of the state space, then it is unnecessary to compute the entire
state probability vector E(t).

Suppose, for example, we are only interested in P{X(t) = A} for
some subset A of the state space. It will be more efficient to forego
computation of 7(t)'s and to compute probabilities at occurrence times

of the underlying Poisson process

A= SEA ¢ (m) = P{X_ € A} = P{X(T) € A}
and then use
T(e,t)
ACt) = P{X(t) e A} = ] A P{N(t) =n} .
n=0
- 18 -
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Similarly, transient measures of the form

E[f(X(tm)] m=1,2,...,%

can be more efficiently computed by foregoing ﬁ(tm), m=1,...,% and
instead using
E[£(Y )] = ] f(s)¢_(n)
n s
seS

and

T(e,t)

E[f(X(£))] = ] E[£(Y )JP(N(t) = n) .
n=0

An example of this type of performance measure is the expected number

of machines operating at time t in a machine repair model.

5. SERT MODELING PROCESS AND RANDOMIZATION

We now present our approach to modeling continuous parameter

Markov processes, which utilizes the randomization procedure in an effi~

cient manner and enables us to determine the transient quantities of
interest discussed in the previous sections. We call the approach

SERT, since it involves the four concepts,

S

state space

E = set of types of events

R = set of transition rate vectors
(one for each element in E; each
vector has |S] components)

T = set of target state vectors

(one for each element in E; each

vector has |S| components)

- 19 -




L

LER ML S s SN ol AL S Sl B A {

Lhh SRR » aus

T -

—

T-467

We now describe an algorithm based on the above for a general
class of continuous-time Markov processes on discrete state spaces.
Consider a Markov process on a discrete state space S. It has E

types of events that may occur: el, €y tees eE. Let E = {el’eZ""’eE}

For each ej e E there exist two vectors, the vector of transition rates
rJ, and the vector of target states ¢ j=1,2,...,E. Thus, when

~

the process is in state s € S, ri, the sth component of r’

, is the rate
at which event ej will occur and consequently put the system into state t

The characterization of the process in terms of states, events,
rates, and targets is a very fruitful way of working with a broad class
of Markov processes, both from the point of view of defining or describ-
ing the process and for use in algorithmic solution methodologies.

The holding time in state s is exponentially distributed with rate
rg. Let A = max r_ be the rate of an underlying Poisson pro-

seS
cess (this corresponds to the maximum diagonal element of the Q matrix

_¢E
rs - ijl

but with this approach it is not necessary to generate the Q matrix per
se). Define a Markov chain on this Poisson process whose transitions

are the result of E + 1 distinct events; ey is the "null event." The

transition probabilities corresponding to different events are

p; = Pr{event of type j | transition (occurrence of Poisson (M)
process) when in state s} = r;/A j=1,2,...,E
p: = Pr{null event, i.e., remaining in state s | transition when
in state s} =1 - r /A
and s
ti = the state to which system goes when a null event occurs = s .

- 20 -
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Transient probabilities of the continuous-time Markov process are com

puted from the transient probabilities of the Markov chain, using equa-

. tion (8)9

T(e,t)
m(t) = }  ¢(n) P(N(t) = n) .
~ 0o -
The vectors Q(n) are computed recursively:
1) ¢(0) = 1(0)
(i1) ¢(n+l) is computed from ¢(n) as follows:

¢

o S € S

(a) ¢s(n+l) = ¢S(n) °p
then ' (10)
() for j=1,2,...,E, and for s € S, add

¢ (n) - pg to ¢ ;(n+l) .

t
S

For a sequence of times 0 < tl < t2 < vee < tl over which the process is
time~homogeneous, compute E(tm)’ m=1,...,% simultaneously by initial-
izing each to 9 and adding ?(n)P(N(tm) = n) to the mth vector as the
?(n)'s are computed recursively. At a discrete point of time-nonhomogeneity,
use the last H(tz) as the initial vector and repeat the process for time
points in the next time interval for which time homogeneity exists.

In the following subsection, we illustrate these concepts on
three examples, the first dealing with a classical machine repair prob-

lem, the secondzu1M/Ek/c queue, and the last a maintained reliability

system.

- 21 -
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2.1 __A Machine Repair Examplc

Consider the classical machine repair with spares model (see, for
example, Gross and Harris [1974])). Since this is a finite birth-death

process, the generator is given by equation (1), where

MA (0<s <Y
Ay = { (N - s)A (Y <s <YH1 = N)
0 (s > N)
sy (0 <s <¢)
US =
cu (c s < N)
and
1/A = mean time to failure of a machine
1/4 = mean time to repair of a machine
M = desired number of machines operating

Y

number of spare machines

]

c number of repairmen (service chs- .eis).
Let us consider a specific problem for whivh M= », ¢ = 3, ¢ = 2,

A=0.2, and 4 = 0.4. Thus,

[-1.0 1.0 0 0 0 0 0 0 0 ]
A4 =1.4 1.0 0 0 0 0 0 0
0 .8 -1.8 1.0 0 0 0 0 0
0 0 .8 -1.8 1.0 0 0 0 0
Q = 0 0 0 .8 -1.6 .8 0 0 0
0 0 0 0 .8 -1.4 .6 0 0
0 0 0 0 0 .8  -1.2 4 0
0 0 0 0 0 0 .8 -1.0 .2
| 0 0 0 0 0 0 0 .8 -.8 ]
- 22 -
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The machine repair problem has a special structure that can be

used to develop an implementation of the randonization algorithm that

exploits the sparseness of Q, which is common to many applications in
queuing theory: there is a very small class of distinct events that are
responsible for all the state changes of the system, namely, there are

' and "completion of

only two types of events, "failure of a machine,'
repair of a machine." If the state of the system is described as the
number of machines in repair, say s, then s is an element of the state
space $ (s € S), where $ = {0,1,2,...,8} in our example, the event
"failure'" corresponds to transition s + s + 1 , the event "repair"
corresponds to transition s + s - 1 , and the respective transition
rates (or intensities) are found on the superdiagonal and the subdiag-
onal cf Q. Thus instead of describing the stochastic behavior of this
system with a 9 X 9 = 81 element Q matrix, we can describe it in terms
of the state space S = {0,1,...,8} , two events [ = {f,r} --"failure"
and "repair'-- and for each event a nine-component vector of transition
rates, namely, Ef and Er’ and a nine-component vector indicating the
resulting (target) state when each event occurs to the system in each
possible state, namely, Ef and Er. Thus the vector of transition rates
with which a "failure" occurs is

- (1.0, 1.0, 1.0, 1.0, .8, .6, .4, .2, 0.0)

and the vector of target states given a failure is

=, 2, 3 4 5, 6, 7, 8 8

(where we use the convention that the target is the same as the original

if the transition intensity is 0.0). Similarly, for the '"repair" event

- 23 -~
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the transition rates are

F = (0.0, .4, .8, .8, .8, .8, .8, .8, .8)

and the targets are

tt =, 0, 1, 2, 3, 4 5, 6, 7).

Thus the behavior of the process can be described using 4 x 9 = 36
numbers instead of 9 x 9 = 81 elements of Q. This description of the
process in terms of the state space, events, transition rate vectors,
and target vectors is our SERT procedure.

We implement the randomization algorithm using this idea of rate

vectors and target vectors for each event, cf. Grassmann's QUE package

(Grassmann [1982]). Consider the Markov chain with transition probabil-

ity matrix P on the underlying Poisson process: it has three events,

non ' and "null event" (no transition). We can see that

"failure, repair,’
this Markov chain can be described in terms of transition probability
vectors for each event and vectors of target states for each event.
Note that the vectors of targets are, of course, the same for the orig-

inal Markov process and the Markov chain on the underlying Poisson pro-

cess. The vectors of transition probabilities for the three events are:

£
P

(.556, .556, .556, .556, .444, .333, .222, .111, 0)

r
P

gcb

(0,  .222, .44k, 444, .4bh, .4b4, 444, 444, .4404)

(.444, ,222, 0O, o, .112, .222, .333, .444, .556) .

Note that the vectors pf, pr, p¢, tf

~ ~ ~

ey

b
f f r r
determine the process. Note that p =7t /A and p = r /A, where

~ ~

rf is the superdiagonal and r’ is the subdiagonal of the Q matrix.

-~

- 24 -
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The fundamental relationship for the randomization algorithm to
be used is equation (8), namely,
T
m(t) = )} ¢(@mP(N(r) = n) .
i=0
The vectors f(n), n=1,2,..., are computed recursively; 90 = E(O),
which is assumed given. To compute @(n+1) from Q(n), recall that
?(n+1) = Q(n)i. We want to avoid direct matrix multiplication by P
because it is so sparse. Instead we use the algorithm given as (10)
f r ¢

based on the vectors of transition probabilities p ', p , P

~ ~ ~

, and the
f T
vectors of target states t and t .
We restate the algorithm for this example as follows. For this
system there are three steps:

1. For each s £ §, set ¢s(n+1) = ¢s(n) . p:

2. For each s ¢ S, add ¢s(n) . p: to ¢ f(n+1)
ts
3. ForeachseS, add ¢_(n) - p; to ¢ _(n+l)

t
s

The notation takes a bit of getting used to. Subscripts always refer to

an element of a vector. For example,

¢S(n) = gth element of ?(n)
= Pr{system state is s (s machines in repair) after n
occurrences of the underlying Poisson (A) process}
ti = sth element of the failure target vector, Ef; that is,

the state to which the system transits given it is in

state s and a failure occurs

- 25 -
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¢ f(n+1) t:th element of the ¢(n+l) vector
t .

s

Pr{system state is t: after n + 1 occurrences of the
underlying Poisson (A) process} .
A little thought reveals that this algcrithm is exactly the same
as g(n)ﬁ, but avoids all the multiplication by zeroes off the three
main diagonals, and also avoids storage of an N x N P matrix.
Consider the P matrix for our example. We can calculate 9(n+1) =
¢(n)§ by straight matrix multiplication. For example,

-~

¢, (n+l)

o-¢0(n) + 0'¢1(n) + o-¢2(n) + .556¢3(n) + .112¢4(n)
+ .444¢5(n) + 0°¢6(n) + 0-¢7(n) + o-¢8(n)

.556¢3(n) + .112¢4(n) + .444¢5(n)

Notice all the zero multiplications. The algorithm method builds up the

¢(n+l) vector as follows:

Algorithm ?(n+l) Element
Step g (nt1) ¢, (n+1) ¢, (n+1) ¢4(n+1) ¢, (n+1) e
1 4443 (n) 2226, (n)  O+¢y(n)  Oedq(n)  .112¢,(n) ...
+ + + + +
2 -556¢,(n) .556¢,(n) .556¢,(n) .556¢,(n) ...
+ + + +
3 0+.222¢, (n)  .444¢,(n) .4440,(n) .4640,(n) .444oc(n) ...

The column sums directly give ¢s(n+1); for example,

¢4(n+1) = .112¢4(n) + .556¢3(n) + .44&¢5(n)

- 26 -
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and hence the six zero multiplications are avo:ded.

' For the machine repair problem, this algorithmic approach has
been written in a FORTRAN program called REPTRAN1 (see Gross, et al.
[1982]). It can handle discrete changes in failure and repair rates.
Over an interval for which Q is constant it simultaneously computes
E(t) for a lattice of time points, by initializing the vectors to 9 and
then adding g(n)P(N(t) = n) as the Q(n)'s are computed recursively,
until the truncation point is reached. The transient probability vec-
tors for the next interval of constant Q is computed using the prob-
ability vector of the last point in the preceding interval as the initial

vector for this interval. (It computes A from the formula

M)A + cp ifecgyY
A={M\ + Yp ife>Y, A>yq
(M+Y - c)x +cu ife>Y, A<y

instead of searching for the maximum value of qs.) It also plots avail-
ability (the probability of at least M machines up = 1 - probability of
at most Y down) versus time. Figure 1 shows the plot for this example,

where A increases by 50% at time 6 and p increases by 50%Z at time 10.

5.2 A Queuing Example: M/Ek/c System

In this section we give a SERT model of an M/Ek/c queuing system.
The transient state probabilities can then be solved using the randomi-
zation algorithm given in the previous section.

First consider the state description of the system. One possi-
bility is

s = (sl, Sys vees S q)

- 27 -
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Figure 1.--Availability vs. time for machine repair example with a 50%

increase in A at t = 6 and a 507 increase in u at t = 10.
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where 8y equals the Erlang stage of the ith service channel (si =0
signifying that the itk channel is empty) and q equals the number of
customers waiting in the queue. We can partition the state space into
two sets corresponding to whether the queue is empty, 30, or whether
there is a positive number of customers in the queue, S+. For states in

SO’ q must be 0 but each s, may be any integer between O and k; thus 30

i
consists of (k + 1)c states, which we assume to be arranged in lexico-
graphical order. Since the queuing system has infinite capacity, S+ is
clearly infinite and thus must be truncated in order to use the randomi-
zation algorithm, as discussed in Section 4.6. Let S+,K correspond to
the subset of S+ for which q < K - ¢ ; thus SO\J S+,K are the states

of an M/Ek/c/K system. The elements in S
+,K

1< Sy Z k , and consequently there are (K - c)kc states in S+ K’ which
?

we also assume are arranged in lexicographical order. Finally, we shall

add one more state, an absorbing state "a", which will be useful in ob~

taining a bound on the error due to truncation. Let Sa = {a}. Whenever

the system exceeds K customers, it is absorbed into Sa. It will be nec-

essary to choose K by observing the amount of probability that is absorbed

by Sa and adjusting K to make this equal to or less than some small

value such as 10-2 or 10-3. The state space will be

= - u .
S SK SOUS+,K Sa

Now let us consider the set of possible events E. There are two
basic types of events: arrivals and completions of a stage of service.

There is the possibility of describing several different systems based

upon the mechanism by which a customer selects a service channel when

- 29 -
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more than one is idle. We shall model this as a classical overflow prob-
lem: the arriving customer attempts to enter channel 1; if channel 1 is
busy he tries channel 2, and so forth. If all channels are busy he
overflows into the queue. (In our truncated state space, if K customers
are in the system, the arrival forces the system into the absorbing

state Sa.) Thus the state change due to an arrival is deterministic

and it suffices to have a single arrival event A. It is necessary to
have a separate event of completion of a stage of service for each ser-
vice channel, because the target state depends on the channel where the

event occurred. Thus we have stage completion events C.,C ,...,Cc and

1’72
the event set has ¢ + 1 elements

E = {a, Cis Cpy ovns cc} .

29
Now let us consider the collection R of rate vectors. We have
¢ + 1 rate vectors, one corresponding to each event in E. In the model-
ing activity we think in terms of a rate function, i.e., the transition
rate is a function of the state of the system. (In Sections 5.2 and 5.3
we thus use functional notation instead of vector notation to describe
the rates and targets in the SERT description.) First consider the rate
function for the arrival event A: arrivals keep coming regardless of
the state of the system; thus

rA(s) = A seS.

In our standard numerical implementation of the randomization procedure

we would use the above function to generate the rate vector with compo-
A

nents r_ = A,se8S, i.e.,

EA = LA,y )

- 30 -
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which would be used in the calculation. (There is always some flexi-

bility in specifying the SERT description. In this case we could have

set rA(a) = 0 1instead of A, but it will make the programming easier
to have the arrival rate equal to A, independent of the state

of the system., A similar consideration holds for the rate of service-
stage completion.) Now consider the event Ci’ completion of a stage of
service at channel i, Since the server in channel i completes stages

according to a Poisson process with rate U

rci(s) =Wy seS.

(Again it is convenient for programming purposes to have a constant rate,
In this case if the server completes a stage of service while the chan-
nel is empty, it remains empty, constituting a dummy event.)

. Finally, let us consider the collection of all target vectors or
functions, T. Each of these gives the target state as a function of
current state for each event in E. First consider the arrival event.
Since we are modeling the system as a classic overflow system

tA(sl,sz,...,sc, q) = (Sl""’si—l’ 1, Si41° " 2800 q)

if sj >0, j=1,...,i-1, and s; = 0

= (sl,...,sc, q+1)

if sj >0, j=1l,.0.5cy, and q < K - ¢

¥ = a ifq=K~-c¢
1

!
[+
.

1 tA(a) =

Now consider the service-stage completion events. Whenever this event

b
-
K occurs the channels move to the next stage unless it is idle
F

- 31 -
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tci(sl,...,sc, q) = (sl,...,si+1,...,sc, q)
if 0 < s, <k
i
= (sl,...,l,...,sc, q-1
if s; = k and q > O
= (sl,...,O,...,sc, q)
if s, = k and q = 0, or if s = 0
tc.(a) = a
i

This completes the SERT description of the model. It is a straight-
forward programming task tc construct the rate and target vectors corres-
ponding to the lexicographically ordered state space and to compute tran-
sient state probabilities using the randomization algorithm. There will
be two sources of probability loss: the € probability lost due to trunca-
tion of the infinite series (4), and the probability absorbed in a ,
na(t) . The total error on all probabilities computed will be bounded by
-(e + ﬂa(t)) and 0. If this bound is not satisfactory, € can be decreased
and K increased.

5.3 A Reliability Example: Parallel
System with Component Repair

Consider a system of n components in a parallel configuration.
Initially all components are operating. The components have independent
exponentially distributed lifetimes; the failure rate of the ith component
is Ai. Upon failure the component is repaired. The repair time has an
independent generalized Erlang distribution with ki stages and rate ui,j

of completion of the jth stage of repair, j = 1’2""’ki' After repair

- 32 -
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is completed the component functions for another independent exponential
(Ai) period of time before failing again. System failure occurs when all
n components are simultaneously under repair. Let L equal the time until
system failure. We would like to compute Pr{L hY t} . Analytical and
approximate aspects of this and related problems are given by Brown [1975]
and Keilson [1975].

First let us consider the ith component. This component can be in
any of ki + 1 states (si = 0’1’2""’ki)’ where state 0 corresponds to
a functioning unit and j corresponds to the jth stage of repair,

j=12,...,k The Markov process describing the ith component has

{
generator

[ -2, A 1

i i
Hinr M
Q = M2 Mi2
i .
Mik ik,

\ 1)

This process has one basic type of transition: ''change." Thus we will

be able to describe the evolution of the n-component system with n

events: E = {C., C,, ..., Cn} , where C; is the event of '"change" of

1’ 72
the ith component.
Now let us consider the state of the entire system. Let

s = (sl,sz,...,sn)

where S5 equals the state of the ith component, s, = 0,1,2,...,ki ,

for i =1,...,n. Let
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S* = {(sl,...,sn) : 0 < s; < ki’ i=1,...,n}

SF = {(sl,...,sn) 1< s, < ki, i=1,...,n}
and

So = 8% - SF .

The subset SF is the set of all states corresponding to system failure
and the subset 30 is the set of all states corresponding to an operating
system. Assume that SO is ordered lexicographically. Let {f} be a
single absorbing state corresponding to system failure. The state space

for this process can be described as

S=SOU{f}.

Now let us consider the collection R of rate vectors, one for each

event type in E. Consider the event Ci' The rate vector (or function)

for this event is

rCi(sl’SZ"°"Sn) = Ai if s; = 0
rC,(Sl’SZ""’Sn) = ul,s. if sy >0
i i
rC.(f) = 0
i
Finally, the target vectors are
tci(sl,...,sn) = (sl,...,si+1,...,sn)
if 0 < s < k or
if s; < k and sj = 0 for some i # j

= (sl,...,O,...,sn)

if s; = ki

if s 0 and s >0 for all j # i

- 34 -
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tC.(f) =
i

This completes the SERT description of the process. It can be programmed
and the randomization technique used to compute ﬂf(t), which will equal

Pr{L < t} .

6. COMPUTATION OF OTHER TRANSIENT QUANTITIES
Using the randomization construction, useful computational formu-
lae can be developed for other transient quantities: (i) expected
time averages, (ii) first passage time distributions, and (iii) expected

number of events of a certain type occurring during a time interval.

6.1 Expected Time Averages

Suppose {X(t), t > »} is a continuous time Markov process with
generator Q, where X(t), the state that the system is in at time t, can
take values s = 0,1,2,...,N . Further suppose that A = maxlqs| < oo
i.e., the process is uniformizable. Then from the preceding discussion,
the process can be represented as a discrete time Markov chain on an
underlying Poisson process, with rate A and transition matrix E =
Q/A+1 . Let {N(D), t > 0} be the counting process of the underlying
Poisson process, i.e.,

N(t) = # occurrences of Poisson process in [0,t]
and let {Tn’ n=1,2,...} be the times of occurrence of this Poisson
process. (Then Tn = min(t : N(t) > n) , etc.) The discrete time pro-
cess {Yn, n=20,1,2,...} , then, is the state of the system just after

the nth occurrence of the Poisson (A) process. Thus {Yn, n=20,1,...}
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is the discrete time Markov chain with transition matrix P. With this

terminology we can now proceed to the quantities of interest.

THEOREM 1i. E[{; X(t)dt) = } [[ Y OEY. ] / (n+ 1)}( t(At)")/n!
n=0 [{j=0

Proof: E[{f X(t)dT]

I ELf X(0dt | N(®) - n] PON(E) =
n=0

= Z E[Y T, + Y,(T,~T)) + ... +Y (e-T ) | N(t) = n] P(N(t) = n)

= )} E Z Y, (T - Tj) [ N(t) = n:] P(N(t) = n)

n=0 j=0
= 7 Z BLY (T, - T)) | N(t) = n] PN(t) = n)
n=0 j=0 J
=1 X By, E[T,, . | N(t) = n] P(N(E) = n)
n=0 j=0 J E
o n
= Z } E BY, 1/(o+1) P(N(t) = n)
= J=
v ° -At
= Z Y B,/ (a+ 1] (e ()M /! Q.E.D.
§=0

The associated computational formula in terms of the tramsient

probability, ¢, for the Markov chain will be

@ n
B x(Dat] = § ) B (M ae™ /@ + 1)
n=0 j=0
e i -At n
=1 | 1 s0,()| UM/ + 11
n=0 |j=0 se$
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The above results can be generalized in the obvious straightfor-

ward way to computational formulae for
t
E[% £(X(1))dt)

where f is any real valued function on the state space of the process.
As an example, consider a machine repair problem. Let X(T) equal
the number of good machines available at time T. Let f(x) = min(x,M) ,

where M is the desired number of operating machines. Then

E[{; min(X(1) ,M)d1]

is the expected amount of machine operating time achieved during [O,t].
As a similar example, consider a fleet of aircraft of which M will be

kept in flight operations if M are available. Then the integral repre-
sents the amount of flight operation time achieved by the fleet during
[0,c].

1f TS equals the sum of deterministic flight time per sortie and

the deterministic inter-sortie ground time, then
E[f; min(X(T),M)dt] / T,

equals the expected number of sorties flown in [0,t]. (This assumes that
the denominator is much less than the numerator, otherwise it is only an
approximation unless t is an integer multiple of sortie time, in which
case it is always exact.)

Other performance measures that can be computed in a similar way
include the expected time the process spends in a particular subset of

the state space, say A, during [0,t]:

E[{f 1, (X(1))dr]
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where lA(-) is the indicator function of the set A. If A indicates the
set of states for which an availability requirement is satisfied, then
the integral represents the amount of time during [0,t]} that the require-

ment is met.

6.2 First Passage Time Distributions

Suppose {X(t), t 2 0} 1is a Markov process on the finite state

space S. Let A be a subset of S and TA the first passage time,

TA = min{t : X(t) € A}.

The randomization technique can be used to compute passage times as fol-
lows: define an associated process {XA(t), t > 0} on the state space
S-aAvV i - s

{a} with generator QA such that qA;i,j qi,j for i,j ¢ A,
Yofa® _ZA %y for i ¢ A, and UYiay " 0 for all j. Thus the set A
is collapsed down to one absorbing state a . The transition intensities

are identical except for O rate out of A. Thus

p{T, <t} = PIX, () = a}

and the first passage probability (left-hand side of the equation) is
equivalent to computing a transient state probability for a Markov pro-
cess (generator QA)’ which can be computed using the randomization algo-
rithm. Melamed and Yadin [1980,1981) use this approach to compute so-

journ times for queuing networks.

6.3 Expected Number of Events in an Interval

Another performance measure of interest (especially when a cost
function is being considered) might be the expected number of a particu-

lar type or class of ecvent which occur in a time interval [0,t]. For
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example, in a reliability problem we might be interested in the expected

number of failures occurring in [0,t].

where
P(Yn =
. (s8)
pJ(

number

system

Let e, € E and suppose we are computing ¢(n)'s recursively,

k|
¢S(n) = P(X(Tn) =g5) = P(Yn = g) . Then ¢S(n) . pj(s) =

s and next event is ej) . Thus the inner product z ¢s(n) .
seS
) , which also equals the expected

equals P(e, occurs at Tn+

1
] . Thus

i

i s in (Tn, Tn+1

E[number of ej's in [0,t]]

[« 5]

}  Elnumber of ej's in {0,t] | N(t) = n] P[N(t) = n]
n=0

= Z E[number of e.'s in [0,T_] | N(t) = n] P[N(t) = n]
n=0 ] "
o n-1

= )} )] E[number of e,'s in (T
n=0 k=0 J

wTp) | N() = n] PINCE) = n]

(e ] n-l
= I I I 6, -p.(s)PIN(E) =n] .
n=0 k=0 sc$ J

7. A GENERAL IMPLEMENTATION FOR PROCESSES
WITH SPARSE GENERATORS

The SERT approach works well if each event can occur while the

is in an arbitrary state or if there are only a few states where

a given event cannot occur. For example, in the machine repair system,

a repair cannot occur when all machines are functional and a failure

cannot

occur when all machines are in repair; otherwise each event can

occur in all remaining states, and SERT is quite efficient. However,

there are sparse systems that are not amenable to this approach, e.g.,
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[ 1 1 0 0 0 )
0 -6 3 3 0
Q=] 4 4 -20 6 6| . (11)
o 5 7 -12 0
{ 0o o 0 2 -2

In this Markov process only 10 of the possible 20 transitious occur
between the five states; however, the SERT description would require
four events because state 3 has four possible transitions. Four events
on a state space of five states will have 4 x 5 = 20 transitions, and
hence not exploit the sparseness at all.

There is a modification of the SERT approach that exploits the

sparseness of Q to the fullest degree. It is based on a single target

“vector t* and a single rate vector r*: Suppose the state space is

ordered into a one-dimensional set with N states, S = {1,2,...,N} .

For each state s in S let Ts = { 4 } be the set of

tg.10 5,20 -0 b, .

states to which a transition is possible, i.e., Ts ={ieS: a4 o,
»
i # s}, and n_ equals the number of such states. We can define a single

target vector t* with N + 22=1 n_ components. Letting mj =j+

Xi;i n,, j=1,...,N , define

t* = n
m, j
J
Gk - %5,k
rk = -q
m,
j k|
rk = q
mptk Tty
ok =1 -
P 1 qi/A
b
p* q / A
mj+k j’tJ,k
- 40 -
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1,2,...4n, , 5 =1,2,...,N . All the information in a gemerator Q

]

will be captured in the vectors r* and t*, For the generator in equa-

tion (11) this representation is given by

N

A

L}

[

This

3,

20,

{2}, T, =1{3,4}, Ty=1{1,2,4,5}, T, ={2,3}, Tg= {4},

(l’ 2’ 2’ 3, 4’ 41 19 2: 49 59 2’ 2) 3’ l' 4)’
(-1’ 1: -6, 39 3’ -20’ 1‘9 4: 6: 6, —12, 5: 7: -2, 2)9
(.95, .05, .7, .15, .15, 0, .2, .2, .3, .3, .4, .25, .35, .9, .1) .

provides an economical way of storing a sparse generator Q of mod-

erate or large size.

The transient distributions ¢(n) of the Markov chain on the under-

lying Poisson must be calculated. As before, this is done recursively

using

¢(n + 1) = ¢(n)P . (12)

The representation of Q with t* and r* yields a representation of P in

terms of t* and p* that makes recursive calculation of ¢n very easy.

~

Letting ¢,(n + 1) be PHINEW(J), ¢,(n) be PHIOLD(J), t* be TSTAR(I), and
b i} i

ﬁg be PSTAR(I), a FORTRAN routine for equation (12) is:

- 4] -




D0 1J=1,N
1 PHINEW(J) = 0.0

I1=20
DO 3J = 1,N
I=1+1

PHIJ = PHIOLD(J)
PHINEW(J) = PHINEW(J) + PHIJ * PSTAR(I)
MJ = TSTAR(I)
IF MJ.EQ.0 GO TO 3
DO 2 K = 1,MJ
I=1+1
TJK = TSTAR(I)

2 PHINEW(TJK) = PHINEW(TJK) + PHIJ * PSTAR(I)

3  CONTINUE

This representation and algorithm totally exploit any sparseness in Q.

For large systems the easier approach may often be a SERT descrip-
tion of the process. If a large degree of sparseness remains in the SERT
description, i.e., many rates are 0, the set of target vectors T can be
transformed into one vector E* and the set of rate vectors R can be
transformed into one vector E* and the general approach used.

In some instances a hybrid approach might be best. If some events
in the SERT description can occur at all states, these events can be
modeled with individual rate and target vectors. If other events in the
SERT description are impossible at many states, then these events should

be pooled into one general "miscellaneous'" event described by t* and r*.
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In closing, we note that we are concerned with systems in which
a large number of occurrences of the Poisson process will happen during
the transient time interval. Thus our primary concern is the rapid cal-
culation of equation (12). We are willing to spend a little extra time
in setting up a one-dimensional state space and rate and target vectors

in order to athieve maximum speed in this calculation.

8. CONCLUSIONS AND SUMMARY

We have presented a review of and some extensions to the randomi-
zation technique for computing transient quantities for Markov processes,
We have introduced the general modeling approach of SERT which seems to
have rather broad applicability and is a general and efficient means of
implementing the randomization technique. Gross and Miller (1982) have
used the SERT/Randomization approach on multi-echelon repairable item
provisioning models. Miller (1982) has used SERT and the sparseness
approach of Section 7 in reliability calculations for fault-tolerant
reconfigurable computer systems.

The SERT approach has the advantage that it is general and applies
to many systems, However, implementations of the randomization technique
tatlored to a specific system may be more efficient. In the latter two
examples of Section 5 it is clear that various improvements could be made
in the implementation by treating special cases. For example, in the
M/Ek/c queue it is unnecessary to store entire rate vectors because they
are all constant. Grassmann (1982) has written an efficient package to

compute state probabilities for queuing networks. Melamed and Yadin
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(1981) have developed an efficient algorithm for sojourn time distribu-
tions in queuing networks. 1In spite of this tradeoff between general
and specific algorithms, it appears that SERT is a good starting point

for the algorithmic analysis of transient Markov processes.
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